
GoActive

A Wearable Device for Posture Tracking

Peter Fidelman
University of Washington
Computer Science and

Engineering
fidelp@uw.edu

Zishen Hu
University of Washington

Electrical Engineering
shen0924@uw.edu

Ka Ho (Steven) Guh
University of Washington

Electrical Engineering
kguh@uw.edu

Zachary Amador
University of Washington
Computer Science and

Engineering
zea@uw.edu

ABSTRACT
Many studies have linked a sedentary lifestyle to health
problems. Unfortunately, it can be inevitable in some cases,
such as after major injury. Doctors and healthcare profes-
sionals want to track the activity levels of their patients,
and especially how they change over time. There are exist-
ing wearable devices that track time spent sitting, but they
are either unreliable or expensive.

We introduce GoActive, a posture monitor worn on the
hip. GoActive recognizes when the wearer is sitting, stand-
ing, and moving. It logs data about the activity of the
wearer to its internal storage, and sends this data over Blue-
tooth Low Energy to a compatible iOS device, where our app
shows statistics about the user’s activity.

Keywords
quantified self, human activity recognition, pattern recogni-
tion, wearable sensors

1. INTRODUCTION
GoActive is a belt-mounted device that monitors its wearer’s

posture throughout the day, sending this data to an iOS app
for real-time examination. Data logging and retrieval is also
possible using the app.

GoActive was inspired by widespread interest in long-
term posture-tracking. Studies have linked more time spent
standing to positive health outcomes. Researchers want a
small, convenient posture-tracking device that they can use
for further research. Consumers, too, may wish to track
their own activity to understand and improve their own
health. Some existing products cannot meaningfully clas-
sify posture; others are bulky and inconvenient to wear, are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

too expensive, or lack real-time feedback. We aimed to ad-
dress these problems by making GoActive inexpensive, easy
to wear, and provide real-time feedback.

This paper will describe the GoActive’s capabilities and
implementation, our team’s design process and testing pro-
cedures, and future directions the project may take.

Figure 1: The GoActive prototype and iOS app

2. RELATED WORK
Several existing consumer and medical devices try to solve

the problem of posture tracking.
No consumer device solves the entire problem. There is

a wide variety of consumer activity-tracking devices based
on accelerometers, such as Fitbit, Jawbone, Lumoback, etc.
These conveniently mount to the wrist or belt. While they
do a decent job tracking overall mobility, they aren’t good
enough to distinguish whether the user is sitting or stand-
ing, mainly due to their location. Another project, Smart-
Move, takes an opposite approach – pressure-sensitive in-
soles. These could certainly distinguish sitting from stand-
ing, but only if the user is wearing shoes – not too useful in
a medical setting. Furthermore, SmartMove is just a Kick-
starter project and is not yet available.

As for medical devices, the most prominent is the Paltech

Figure 2: Block Diagram of the GoActive

activPAL leg-mounted accelerometer. Its stated purpose is
posture tracking, and many medical researchers use it for
just that. While it undeniably works, it is not a satisfy-
ing solution: expensive, bulky and attaches via proprietary
sticky pads. There is plenty of room for a competitor.

3. TECHNICAL DETAILS

3.1 Overview
The components of the full GoActive system were:

• Hardware

• Case

• Firmware

• iOS App

3.2 Theory of Operation
The GoActive firmware performs data collection, posture

recognition (via machine learning), and posture logging. It
transfers data to the iOS app over a BLE connection. The
app, in turn, allows users to visualize and explore their pos-
ture history and receive real-time feedback. Briefly, the
firmware’s purpose is data collection and classification, while
the app’s purpose is data aggregation and visualization.

We designed GoActive as an autonomous device – it should
not break as soon as it leaves the smartphone’s Bluetooth
range. If the phone is expected to be absent for long periods,
the device must be able to log long time periods to internal
storage, and running out of space (or battery) is instantly
fatal. The best way of preventing this is to keep the device’s

storage requirements modest. We were able to quickly rule
out logging raw accelerometer data , instead focusing on ex-
tracting the events the user actually cares about: transitions
between postures.

3.3 Implementation Details

3.3.1 Hardware
The GoActive’s custom PCB has a BLE (Bluetooth Low

Energy) module, a three-axis accelerometer, a USB charg-
ing unit and a voltage regulator. The BLE 113 module
is produced by Bluegiga, a company who provides short-
range wireless connectivity solution, and BLE’s design is
based on the Texas Instruments CC2541 low energy blue-
tooth system-on-chip with on-chip antenna.

The three-axis accelerometer is used to detect human pos-
tures and generate raw data for BLE 113 module to deter-
mine for pre-defined postures. The GoActive wearable is
currently limited to sitting and standing postures, and more
postures like running, walking, or even biking can be added
to GoActive system using the same accelerometer and move
advanced software control.

GoActive is powered by a rechargeable 1100mAh Lithium-
ion battery and a battery management controller, the Mi-
crochip MCP73831T. The capacity of the battery can last
for at least a week under intense use in terms of frequent
data synchronization. The charging circuitry is designed to
be fast and safe such that the battery takes 2 hours or less
to fully charge. In addition, low battery detection circuitry
informs users about the battery status. A red LED indicator
represents low battery state. The long battery life provides
convenience to users as well as overhead power so more fea-

Figure 3: PCB layout

tures could be added to the system in the future.
To ensure all components in GoActive system operating

under safe voltage range, a voltage regulator is utilized to
maintain a constant voltage level. The voltage regulator
chip is a MICREL MIC5219. The MIC5219 is an efficient
linear voltage regulator with high peak output current capa-
bility, very-low-dropout voltage, and better than 1% output
voltage accuracy. The power rail of the GoActive is 3.3V
which is a safe and stable voltage for every component in
the system.

In addition, the GoActive system has a 16Mbit external
SPI flash memory chip along with the internal storage on
the BLE113 module. Software support for the AT45DB161D
flash memory is currently under testing and will be added to
the system in the future. The 16Mbit capacity will allow the
GoActive system to store data for up to ten weeks between
synchronizations with an iOS device without loss of data.

3.3.2 Firmware
The GoActive firmware is responsible for converting raw

accelerometer data into a series of timestamped postures
(SIT/STAND/etc), then buffering them until they can be
sent to the smartphone app. These tasks must coexist with
the BLE stack and its overhead, as all run on a single CC2541
SOC with 8k of RAM.

At the highest level, the firmware’s structure was dictated
by a design decision Texas Instruments made years ago.
Specifically, TI does not provide source code to their BLE

stack, just object files. These are divided into ten tasks,
one for each level of the stack. Unfortunately for the im-
plementor, these tasks expect to be called by TI’s OSAL
(Operating System Abstraction Layer) effectively dictating
its use. They do not run in interrupt context, meaning all
user code must adhere to strict – but ill-defined – timing
and memory-usage constraints so as not to disrupt the BLE
stack and cause disconnection. Additionally, the overhead
of OSAL, the BLE stack, and the accelerometer driver, took
roughly 6K of RAM, leaving a bit under 2K for GoActive’s
custom tasks. Some creativity was required in dealing with
these limitations.

GoActive is built around a circular buffer of timestamped
postures. The firmware’s responsibilities are thus simple:
enqueue new postures to this buffer as the user moves around,
and dequeue/send postures whenever a BLE connection to
the GoActive smartphone app is available. We configure an
OSAL timer (presumably implemented by a real timer in-
terrupt) to schedule the main GoActive task every 100ms.
This ‘tick’ is GoActive’s atomic unit of time.

To enqueue new postures to the buffer:

• Every 100 ms (one tick): the accelerometer is sam-
pled once, and this (x,y,z) triple is placed in a 20-triple
buffer. The resulting sample rate is 10Hz.

• Every 2 s: this buffer fills, and is passed to the ma-
chine learning functions for feature-detection and clas-
sification. The exact nature of the ML classifier will
be described in the Machine Learning section. For
now, know that it outputs one posture. The posture
is placed in a 5-long buffer for deflickering.

• Every 10 s: the 5-long buffer fills. Majority voting
is used to pick a ‘dominant’ posture from this buffer,
which is then timestamped. (in other words, deflick-
ering through majority vote). This datapoint is then
logged into the main circular buffer of postures, if and
only if it is different from the last posture. That is,
only posture transitions are logged.

The worst-case runtime (new sample triggers ML, then
ML triggers deflickering and logging) is rare, occurring only
once per one hundred ticks. Moreover, testing reveals that
even this worst case does not last long enough to disrupt a
BLE connection.

To dequeue and send postures:

• Every 100 ms (tick): check for an active BLE connec-
tion; if one is found, repeatedly pop a datapoint from
the main circular buffer and send it as a BLE Notifi-
cation, until the circular buffer is empty.

This scheme has one fundamental weakness: if there is no
active BLE connection, the circular buffer eventually fills up
and any newly-collected posture data will be lost. This is
where the flash memory comes in. If an append causes the
circular buffer to fill completely, the buffer contents should
be dumped to flash, and the buffer emptied. This prevents
posture data from being overwritten or lost. Unfortunately,
we did not have a PCB with a working flash chip ready until
less than 36 hours before the Mother of All Demos deadline;
although a flash driver was written far in advance, there was

Figure 4: Schematic of PCB

simply not enough time with the hardware to sufficiently
debug and test it. The lack of working flash memory limits
the time GoActive can remain disconnected from the smart-
phone before losing data. Fortunately, there was enough free
RAM to buffer approximately 30 minutes of data, and this
fallback plan proved sufficient for our demos.

3.3.3 Machine Learning
First, three features were extracted from three-axis ac-

celerometer data in a two-second window. They are vari-
ance of movement intensity(VI), mean of movement inten-
sity, normalized signal magnitude area (SMA). Movement
Intensity is defined as the Euclidean norm of the total accel-
eration vector after removing the static gravitational acceler-
ation, where ax(t), ay(t), az(t) represent the tth acceleration
sample of x, y, and axis of the accelerometer[2].

MI(t) =
√

ax(t)2 + ay(t)2 + az(t)2 (1)

Movement intensity is independent of the orientation of
the accelerometer; however, this feature is a time series data,
which just like raw accelerometer data. Therefore, move-
ment intensity were not used directly in the machine learn-
ing algorithm. Instead, average and variance of movement
intensity were used.

AI =
1

T
(

T∑
t=1

MI(t)) (2)

V I =
1

T
(

T∑
t=1

(MI(t)−AI)2) (3)

Furthermore, normalized signal magnitude area (SMA)
were used to feed in the machine learning algorithms. SMA
is defined as the acceleration magnitude summed over three
axes within each window normalized by the window length[2].

SMA =
1

T
(

T∑
t=1

|ax(t)|+
T∑

t=1

|ay(t)|+
T∑

t=1

|az(t)|) (4)

To detect posture, the three features extracted from ac-
celerometer data over two seconds window were used to feed
into number of machine learning algorithms, such as logis-
tic regression, k-nearest neighbor (KNN), and neural net-
work. 40% of the total data was partitioned into test set,
and the reset was used to feed in the machine learning algo-
rithms. The accuracy of three algorithms on the triple axis
accelerometer data on test set was above 90%. However,
large number of floating point calculations and large mem-
ory were needed in order to compute those machine learning
algorithms.In order to fit a machine learning algorithms in
the embedded systems especially the 8051 microcontroller
inside of the BLE 113, we discover condensed nearest neigh-
bor (CNN). CNN is similar to KNN except, it uses a reduced
set of data pool and classifies new data using KNN when k
equals to one.

To condense data using CNN, three features were first
extracted out from the raw accelerometer data. Second, we
choose a random classified sample x in the pool. Then, we
find a nearest classified sample y that is not same we chose
using Euclidean distance. Remove x in the pool, and add to
a second pool. Repeat the process from finding the nearest
classified sample until no more data is add to the second

Figure 5: Graph of the three features we extracted from the accelerometer data with a two-second window

pool.
Once this process is done, we have a condensed data set

and the original data set. We managed to condense of our
large pool of data set to 6 point of data as shown in Diagram
4. We would not able to do this if our data does not form
distinct cluster or if our data have a lot of noise. Fortunately,
we have the data that met those conditions. The CNN clas-
sifier has high accuracy (98%-100% dependent on the data
randomization) on the test set, which was partitioned from
total data as mention previously.

When the data pool is relatively small, the CNN does not
use a lot of computing power and memory, because the al-
gorithm finds the nearest point in the data pool against the
new sample by computing the euclidean distance of three
features Concretely, our embedded system extracts those
three features, which are VI, AI, and SMA, from a 2-second
window, and finds the nearest data point in the data pool,
then classifies the new sample point as the nearest data
point’s classified label. This process is relatively less compu-
tational hungry, and memory inexpensive compare to other
machine learning algorithms. Therefore, KNN was an ideal
machine learning algorithm for us.

3.3.4 iOS Application
The iOS application in this project served as a visual rep-

resentation of the data in the GoActive device. Our applica-
tion used Core Data, which is an iOS framework developed
by Apple that provides generalized and automated solutions
to common tasks associated with object life-cycle and ob-
ject graph management[1], as its object model to store all
data from the GoActive device. The application provides
a connect and export button and visual representation of
transition count and the duration of sitting and standing as
shown in Diagram 5.

When the connect button is pressed, the application will
first check if the application is allowed to use Bluetooth and
the application has bluetooth available. Second, it will dis-
cover any device nearby that has offered the unique blue-
tooth service. Third, it will try to connect the bluetooth
and turn on the notification of specific characteristic. Once
the notification has turn on, iOS app process the the notifi-
cation update on the GoActive. We managed to used the no-
tification to received historical data in the device, and sync
the current posture update. The first notification received
is expected to be a special state that has a timer timestamp
representing the timer in the GoActive device when the iOS
device turned on the notification. Then, we will store a wall
clock time stamp when this special state has received. After
we received this special state, the appication is expected to
received different states of posture with a timer timestamp

that has the same reference in the first special state. We
can calculate the exact wall clock time on each posture data
by subtracting the stored wall clock time stamp by the spe-
cial state timer timestamp and summing the posture timer
timestamp. The notification will update a single posture
data at a time, the application will check if the incoming
posture data has the same posture state as the last posture
data. If they are the same, then the application will ignore
the incoming posture since logging this new incoming pos-
ture does not provided any new information. Also, this will
likely happened when the GoActive device is in sync mode
(finished transferring all historical data) because the sync
mode in the device will send any data in a 10-second period.
If a user wants to terminate the bluetooth transmission with
the GoActive device, simply click disconnect button or press
home button. If the user wants raw data in the Core Data,
a export button is designed to export all data in Core Data
as csv format.

4. EVALUATION AND RESULTS
The PCB was able to detect pre-defined postures, cur-

rently limited to sitting and standing. All collected data was
stored in BLE 113 module’s internal flash, and processed in
BLE before synchronize with iOS application. The user in-
terface of iOS application displayed real-time feedback about
number of times of sitting and standing users have done, and
the duration of each category in hours. Software infrastruc-
ture worked satisfactorily. The firmware successfully logged
posture data and transmitted it to the iPhone app, which
in turn successfully logged and analyzed it. The system’s
main weakness was the inaccuracy of the detected postures.
In our own testing, the device produced accurate results,
but during the Mother of All Demos many spurious pos-
ture transitions were detected. Some possible explanations
of this are presented in the Discussion section.

5. DISCUSSION
There are several possible reasons for the disappointing

Mother of All Demos results.

• The device was never trained for its wearer, Tien. It
is possible that his body geometry or movement style
was different enough from our group members’ that our
ML classifier’s predefined sitting/standing/etc. points
were not accurate for him.

• During the demo, Tien wore the device far forward on
his hip. The device was designed to sit flat against
the right side of the beltline, and this is how it was
trained. The difference in location would likely have
produced unfamiliar accelerations. Providing clearer
instructions with the device (such as a diagram) might
mitigate this problem in the future.

• There may be unaddressed problems in our design.
Maybe we need to use a more sophisticated machine
learning algorithm. Maybe the firmware isn’t sampling
at high enough rate. Perhaps a hip-mounted device
is not sufficient to detect posture changes in 100% of
wearers.

During testing, we concluded that ML accuracy was suf-
ficient (as GoActive works reasonably well on all members

of our team). This demo proves there is much room for im-
provement. If further development takes place on the sys-
tem, it would be prudent to recruit a much larger group of
testers, preferably with diverse body geometries.

A few new features can be added to GoActive system uti-
lizing the same hardware in the near future. For instance,
running and biking are very popular exercise in people’s
lives, it would provide higher quality of exercise outcome
with GoActive system that keeps track of the users’ pos-
tures and to provide more details about their exercise cy-
cles. Users will have accurate and sufficient data to vary
their exercise accordingly. Working out with consistency is
important for achieving fitness results.

There are three improvements can be made to the hard-
ware of the current GoActive prototype. The first one is to
reserve clearance area on the PCB for better connectivity
of on-chip antenna. The clearance area will provide longer
range reception and also stronger wireless signal when per-
forming data synchronization between BLE113 and iOS ap-
plication. Clearance area means that there should not be
any passive components or ground plane that possibly gen-
erate signal interfere with antenna signal. The second im-
provement is to minimize ripple voltage from power supply.
A large capacitor was added to system stabilize output volt-
age from voltage regulator. It is always a good idea to make
input voltage as consistent as possible. Lastly, all decou-
pling filters should be as close as possible to power source to
block certain noise and passing others. Any small signal in
low energy circuit could have significantly affected the whole
system in mysterious ways.

6. CONCLUSION
In this paper we have introduced GoActive, a hip-mounted

posture tracking device that distinguishes sitting, standing,
and walking states. As part of a senior capstone project,
our group designed, built, and tested a working prototype.
In the wearables market, GoActive is unique: many exist-
ing products cannot meaningfully classify posture; others
are bulky and inconvenient to wear. GoActive is important
as a specialized, real-time posture-tracking device with the
potential for both consumer and scientific uses.

7. ACKNOWLEDGMENTS
The team would like to thank Shwetak Patel for running

this capstone class. He gave us enormously useful advice
and direction, and connected us with Dori Rosenberg from
Group Health to get feedback on the needs of medical re-
searchers.

We’d like to thank Dori Rosenberg for giving us a lot
of insight into the inadequacies of existing posture tracking
devices, which helped inform our design.

We would also like to thank Tien Lee, the Teaching As-
sistant for CSE477. He was very helpful for getting us hard-
ware to prototype with, giving us advice and feedback on
our PCB and case, and testing the device for the Mother of
All Demos.

8. REFERENCES
[1] Apple. Core data programming guide.

https://developer.apple.com/library/mac/

documentation/Cocoa/Conceptual/CoreData/

Articles/cdTechnologyOverview.html, 2014.

[2] M. Zhang and A. A. Sawchuk. A feature selection-based
framework for human activity recognition using
wearable multimodal sensors. In Proceedings of the 6th
International Conference on Body Area Networks,
BodyNets ’11, pages 92–98, ICST, Brussels, Belgium,
Belgium, 2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

